
Laboratorium 10

Zad. 10.1

Zainstaluj program środowisko Context wraz z kompilatorem nasm zgodnie z instrukcją
umieszczoną w katalogu „konfiguracja środowiska”.

W edytorze ConTEXT otwórz plik char.asm i przetestuj kolejno:

F9 – kompilacja

F10 – uruchomienie

F11 – deasemblacja
F12 – debugger

W debuggerze wpisz kolejno komendy:

file asmloader

run char

q

Zad. 10.2

Prześledź wynik uruchomienia programu char.asm. Przykładowa sesja:

Simplified Assembly Loader v.0.0.1 by gynvael.coldwind//vx

Code loaded at 0x002c0100 (12 bytes)

H

- pod jaki adres logiczny został załadowany ten program?
- ile bajtów zajmuje ten addres logiczny?
- ile bajtów w pamięci zajmuje ten program?
- jaki jest wynik działania tego programu?

Zad. 10.3

Prześledź wynik działania deasemblera dla programu char.asm.

00000000 6A48 push byte +0x48

00000002 FF5304 call [ebx+0x4]

00000005 83C404 add esp,byte +0x4

00000008 6A00 push byte +0x0

0000000A FF13 call [ebx]

- co przechowuje pierwsza, druga i trzecia kolumna w powyższym listingu?

- jaki adres ma instrukcja push 'H' ?
- ile bajtów ma instrukcja push 'H' ?

- jaki kod rozkazu ma instrukcja push 'H' ?

- jaki kod ASCI ma literka 'H' ?

https://sjp.pl/deasemblacja

- jaki adres ma instrukcja call [ebx+1*4] ?

- ile bajtów ma instrukcja call [ebx+1*4] ?
- jaki kod rozkazu ma instrukcja call [ebx+1*4] ?

- ile bajtów zajmuje kod rozkazu instrukcji call [ebx+1*4] ?

- jaki kod ma argument instrukcji call [ebx+1*4] ?

- jaki adres ma instrukcja add esp, 4 ? *

- ile bajtów ma instrukcja add esp, 4 ? *

- jaki kod rozkazu ma instrukcja add esp, 4 ? *
- ile bajtów zajmuje kod rozkazu instrukcji add esp, 4 ? *

- jaki kod ma argument instrukcji add esp, 4 ? *

- jaki adres ma instrukcja call [ebx+0*4] ? *

- ile bajtów ma instrukcja call [ebx+0*4] ? *

- jaki kod rozkazu ma instrukcja call [ebx+0*4] ? *
- ile bajtów zajmuje kod rozkazu instrukcji call [ebx+0*4] ? *

- czy instrukcja call [ebx+0*4] ma kod argumentu? *

Zad. 10.4

Na poniższym przykładzie omów ogólne zasady formatowania kodu w języku asemblera.

label instruction ; comment

; column 10 ; two spaces before a semicolon

- w której kolumnie umieszczamy etykiety?
- w której kolumnie umieszczamy instrukcje?
- ile spacji dajemy przed średnikiem w komentarzu?

Sprawdź czy program char.asm został poprawnie sformatowany.

Zad. 10.5

Przepisz i przeanalizuj program labels.asm. Zapisz go pod nazwą labels2.asm oraz

zamień w nim nazwy etykiet adresami właściwymi dla uruchomionego programu.

- jak działa instrukcja call _addr4 ?

- ile bajtów zajmuje instrukcja call _addr4 ?
- jaki adres odkłada na stos instrukcja call ?

- pod jaki adres skacze instrukcja call ?

- jaki kod rozkazu ma instrukcja nop ?
- jaki kod rozkazdu ma instrukcja ret ?

- skąd instrukcja ret pobiera adres powrotu?

Zad. 10.6

Napisz program printf.asm wypisujący napis Hello world! przy pomocy API

asmloadera. Wykorzystaj komentarz:

; push on the stack the run-time address of format and jump to getaddr

- jaki adres ma instrukcja call getaddr ?
- ile bajtów ma instrukcja call getaddr ?

- jaki kod rozkazu ma instrukcja call getaddr ?

- ile bajtów ma argument instrukcji call getaddr ?

- co przechowuje etykieta format ?

- jaką wartość ma etykieta format ?

- jaką wartość na stosie ma format ?

Zad. 10.7

Napisz program, który przy pomocy asmloader api:

printf2.asm – wyświetla stałą a

printf3.asm – wyświetla dwie stałe a i b *

printf4.asm – wyświetla stałą a w podprogramie print
printf5.asm – wyświeta dwie stałe a i b w podprogramie print *

printf6.asm – wyświeta stałą a zapisaną w pamięci programu

printf7.asm – tak jak powyżej, ale z wykorzystaniem instrukcji pop *
printf8.asm – skrócona wersja programu print6 *

printf9.asm – skrócona wersja programu print7 *

Wskazówka do dwóch ostatnich zadań:

Umieść liczbę a i napis a = w jednolitym/spójnym obszarze pamięci.

Zad. 10.8

Napisz program, który przy pomocy asmloader api:

add.asm – dodaje do rejestru eax zawartość rejestru ecx i wypisuje wynik

add2.asm – dodaje do wartości a w rejestrze eax stałą b i wypisuje wynik

add3.asm – dodaje do wartości a w rejestrze eax liczbę b z pamięci i wypisuje wynik *

sub.asm – odejmuje od rejestru eax zawartośc rejestru ecx i wypisuje wynik *

sub2.asm – odejmuje od wartości a w rejestrze eax stałą b i wypisuje wynik *
sub3.asm – odejmuje od wartości a w rejestrze eax liczbę b z pamięci i wypisuje wynik *

Zad. 10.9

Napisz program ilustrujący działanie instrukcji dodawania z przeniesieniem adc (add with

carry) kolejno ze zgaszoną i ustawioną flagą CF. Instrukcja clc (clear carry flag) gasi flagę CF.
Instrukcja stc (set carry flag) ustawia flagę CF.

adc.asm – dodaje do rejestru eax zawartość rejestru ecx i wypisuje wynik

adc2.asm – dodaje do wartości a w rejestrze eax stałą b i wypisuje wynik

Uwaga: oba programy mają wyświetlać po dwa wyniki.

Zad. 10.10 *

Napisz program ilustrujący działanie instrukcji odejmowania z pożyczką sbb (subtract with
borrow) kolejno ze zgaszoną i ustawioną flagą CF. Instrukcja clc (clear carry flag) gasi flagę

CF. Instrukcja stc (set carry flag) ustawia flagę CF.

sbb.asm – odejmuje od rejestru eax zawartośc rejestru ecx i wypisuje wynik

sbb2.asm – odejmuje od wartości a w rejestrze eax stałą b i wypisuje wynik

Uwaga: oba programy mają wyświetlać po dwa wyniki.

